

Akshay Daydar¹, Ajay Kumar Reddy¹, Sonal Kumar¹,
Arijit Sur¹, Hanif Laskar²

¹Indian Institute of Technology Guwahati, ²Guwahati Neurological Research Institute (GNRC)

Human Knee

Med-SeAM: Medical Context Aware Self-Supervised Learning Framework for Anomaly Classification in Knee MRI

ICVGIP 2024

Introduction

The prevalence of meniscal tear is 12% to 14%, while the occurrence of ACL tear is 4% to 6% annually.

Challenges:

- 1. Obtaining high-quality slice labels for diagnosing disorders from MRI volumes is challenging in medical settings.
- 2. Current self-supervised methods [3,13] rely on simplistic label assignments for pretext tasks.
- 3. Medical imaging poses challenges for deep learning due to grayscale nature, non-differential spatial context, and small ROIs relative to image dimensions.

Complete anterior cruciate ligament (ACL) tear (arrow)

Meniscal tear at posterior horn of the lateral meniscus (arrow)

Abnormality: Large effusion (arrow)

Complete ACL Tear (arrow), abnormal attachment of ACL

ICVGIP 2024

Proposed Scheme

Stage II: Binary Classification of Knee Anomalies - Downstream Task $\,$

Entropy Maps

ICVGIP 2024

Proposed Scheme

Figure 1: Schematic of proposed Med-SeAM framework

Contributions:

(1) A novel two-step self-supervised scheme, **Med-SeAM** for **binary classification** from MRI volumes of the knee.

Anomalies : Abnormality, meniscal tear and ACL tear

- (2) A novel pretext task, **Disease Context Learning (DCL)**, is proposed to predict the critical MRI slices in MRI volume.
- (3) A **Multi-Domain Cross Attention** (MDFCA) module is proposed to contemplate the cross attention between the MRI slices and its entropy counterpart.

ICVGIP 2024

Experimental Results

Table 1: Comparison of the proposed Med-SeAM framework with SOTA

Туре	Architecture	Accuracy	Sensitivity/Specificity	AUC
ACL tear	MRNet [1]	0.791	0.703 / 0.863	0.872
Abnormality		0.858	0.957 / 0.486	0.921
Meniscus Tear		0.683	0.615 / 0.750	0.740
ACL tear	EINet [2]	0.750	0.500 / 0.954	0.807
Abnormality		0.783	0.949 / 0.660	0.802
Meniscus Tear		0.700	0.712 / 0.576	0.716
ACL tear	SKID [3]	0.691	0.111 / 0.988	0.825
Abnormality		0.825	0.979 / 0.240	0.883
Meniscus Tear		0.675	0.753 / 0.471	0.760
ACL tear	Proposed Model (w/o SSL)	0.692	0.674 / 0.760	0.717
Abnormality		0.810	0.890 / 0.687	0.816
Meniscus Tear		0.642	0.766 / 0.587	0.753
ACL tear	Proposed Model	0.767	0.776 / 0.704	0.837
Abnormality		0.875	0.926 / 0.683	0.803
Meniscus Tear		0.742	0.760 / 0.680	0.719

ICVGIP 2024

Experimental Results

Figure 2: Comparison of the proposed Med-SeAM framework with SOTA using tSNE plots

ICVGIP 2024

Ablation Study

Table 2: Effect of proposed DCL Pretext Task

Architecture	ACL Tear	Abnormality	Meniscal Tear
SimCLR [11]	0.618 / 0.688	0.722 / 0.649	0.603 / 0.654
MoCoV2 [12]	0.449 / 0.390	0.727 / 0.690	0.547 / 0.610
SKID [3]	0.691 / 0.825	0.825 / 0.883	0.641 / 0.760
Context-aware SSL [13]	0.751/ 0.913	0.855 / 0.855	0.671/ 0.788
Proposed Model	0.767/ 0.837	0.875 / 0.803	0.742 / 0.719

Figure 3: Effect of Entropy window sizes

ICVGIP 2024

Table 3: Effect of proposed MDFCA for different intra-slice and inter-slice backbones

Architectures ↓	ACL Tear (Accuracy / AUC)	ACL ear (Sensitivity / Specificity)	Abnormality (Accuracy A	Abnormality (Sensitivity / Specificity)	Meniscal Tear (Accuracy / AUC)	Meniscal Tear (Sensitivity / Specificity)
Alexnet [4] + LSTM [5]	0.733 / 0.729	0.658 / 0.772	0.780 / 0.741	0.812 / 0.621	0.658 / 0.673	0.788 / 0.558
Alexnet [4] + Bi-GRU [6]	0.691 / 0.691	0.685 / 0.697	0.810 / 0.791	0.840 / 0.640	0.634 / 0.690	0.787 / 0.573
Alexnet [4] + MDFCA + LSTM [5]	0.741 / 0.718	0.698 / 0.752	0.800 / 0.811	0.842 / 0.680	0.652 / 0.713	0.766 / 0.587
Alexnet [4] + MDFCA + Bi-GRU [6]	0.722 / 0.791	0.735 / 0.745	0.850 / 0.812	0.844 / 0.720	0.742 / 0.719	0.760 / 0.680
VGG-19 [7] + LSTM [5]	0.725 / 0.723	0.703 / 0.747	0.824 / 0.686	0.891 / 0.440	0.608 / 0.631	0.807 / 0.459
VGG-19 [7] + Bi-GRU [6]	0.775 / 0.773	0.759 / 0.787	0.833 / 0.732	0.905 / 0.660	0.633 / 0.663	0.884 / 0.441
VGG-19 [7] + MDFCA + LSTM [5]	0.715 / 0.718	0.698 / 0.752	0.833 / 0.732	0.905 / 0.660	0.618 / 0.616	0.822 / 0.439
VGG-19 [7] + MDFCA + Bi-GRU [6]	0.785 / 0.793	0.780 / 0.822	0.840 / 0.792	0.844 / 0.720	0.629 / 0.667	0.900/ 0.449
Resnet-50 [8] + LSTM [5]	0.667 / 0.627	0.694 / 0.560	0.675 / 0.662	0.684 / 0.640	0.567 / 0.572	0.615 / 0.529
Resnet-50 [8] + Bi-GRU [6]	0.591 / 0.601	0.703 / 0.500	0.658 / 0.651	0.663 / 0.640	0.583 / 0.575	0.519 / 0.632
Resnet-50 [8] + MDFCA + LSTM [5]	0.665 / 0.647	0.728 / 0.596	0.699 / 0.683	0.701 / 0.650	0.587 / 0.602	0.622 / 0.549
Resnet-50 [8] + MDFCA + Bi-GRU [6]	0.589 / 0.605	0.707 / 0.504	0.688 / 0.705	0.691 / 0.671	0.608 / 0.605	0.499 / 0.657
Densenet-121 [9] + LSTM [5]	0.697 / 0.766	0.746 / 0.793	0.826 / 0.783	0.874 / 0.640	0.641 / 0.625	0.500 / 0.750
Densenet-121 [9] + Bi-GRU [6]	0.733 / 0.737	0.778 / 0.697	0.780 / 0.741	0.734 / 0.642	0.558 / 0.599	0.908/ 0.293
Densenet-121 [9] + MDFCA + LSTM [5]	0.699 / 0.768	0.744 / 0.791	0.866/ 0.813	0.925/ 0.680	0.636 / 0.628	0.496 / 0.745
Densenet-121 [9] + MDFCA + Bi-GRU [6]	0.741 / 0.732	0.782 / 0.702	0.897 / 0.607	0.846 / 0.691	0.897 / 0.609	0.687 / 0.621
Mobilenet-V2 [10] + LSTM [5]	0.722 / 0.767	0.702 / 0.743	0.828 / 0.698	0.875 / 0.621	0.600 / 0.574	0.384 / 0.746
Mobilenet-V2 [10] + Bi-GRU [6]	0.767 /0.833	0.833/ 0.790	0.826 / 0.783	0.862 / 0.610	0.633 / 0.574	0.384 / 0.764
Mobilenet-V2 [10] + MDFCA + LSTM [5]	0.730 / 0.772	0.707 / 0.738	0.858 / 0.778	0.915 / 0.671	0.618 / 0.593	0.375 / 0.802
Mobilenet-V2 [10] + MDFCA + Bi-GRU [6]	0.782/ 0.838	0.832 / 0.795	0.875/ 0.803	0.926 / 0.682	0.645 / 0.624	0.334 / 0.792

ICVGIP 2024

Conclusion

- 1. The Med-SeAM framework is found to improve classification performance of abnormality by 10.61% in accuracy and 3.5% in sensitivity, while for meniscal tear, the improvement is about 2.06% in accuracy compared to SOTA.
- 2. The Med-SeAM outperforms Context-Aware SSL [13] by 2.13% in average accuracy for detecting knee anomalies. This significant improvement stems from integrating domain knowledge, leveraging the spatial consistency and minimal dynamic changes in medical images.
- 3. The proposed DCL pretext task can be effectively applied to volume-based data, even in the absence of explicit slice labels.

ICVGIP 2024

Selected References

- [1] Nicholas Bien et al. 2018. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS medicine 15, 11 (2018), e1002699
- [2] Chen-Han Tsai et al. 2020.Knee injury detection using MRI with efficiently-layered network (ELNet). In Medical Imaging with Deep Learning. PMLR, 784–794.
- [3] Siladittya Manna et al. 2023. Self-Supervised Representation Learning for Knee Injury Diagnosis From Magnetic Resonance Data. IEEE Transactions on Artificial Intelligence (2023).
- [13] Li Sun, Ke Yu, and Kayhan Batmanghelich. 2022. Context-aware Self-supervised Learning for Medical Images Using Graph Neural Network. arXiv preprint arXiv:2207.02957 (2022).

Thank You!!

