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CHALLENGES ‘O\

[rregularity of pathological structures.

Uncertainties in delineating both inter- and intra—cartilage boundaries.

LIMITATIONS OF PREVIOUS WORKS

[nconsistencies in the capturing multi-tissue context "’

~

O

segmentation refinement stage [

line and cumber-some implementations of post-processing stage or
1-3,5]




5\@‘%‘?& Ff"“g”?\?
al’ ™= CONTRIBUTIONS ‘ o
Processing D, s
Society Yo gpzmmred®
Multi-Scale Attentive-Unet (MiSA-Unet) model .
Scale-aware Attentive

Diffusion-based Multiple Tissue Shape Reconstruction

Feature Fusion P e I s N F E h
_______________ (DMulTiSR) Loss I I l
l Input | : : Batch Normalization Weighted Pixel-wise Loss L1 Loss o . e ature n anc e e nt

_____________________________________

To address structural

: ;! :
e R e ey S e | module (SAFE)
. 3 ; 3 : Convolutional Block Attention Module (CBAM) = A A_:
I . R L L L L L T e £ . 3 ;
: . anmn E : A 1 ° b
| ' L= e B . &1 " [E] A To focus on multilevel spatial
: I IJ_ : Input | 1 Shared MLP % i LE: \ «13 :
1 ! I
= il ol N i e R ERRRREEERR | 1 and channel context for
. - " B A o Flen o« Ll [ 1
BN 1 1 v ' Y, .
1 Rell7 'w) : Channel : r- i L[ " % : MDdiﬁEdE{flE-NEl : accountlng relevant local and
—— i o i 1 | z : (P 1
ﬁT T : :::i[::: : =| |&® A‘:Ethl : \ Feature : E TN T Combined loss (£, ) : glOb al
- ' e e e e e o e = S - S ) , |
' BN A I s, J | Thresholding :
: Hety : - == .x ; ! Y Degraded Cartilage Mask ! - ((C ° b d
vl T T N ; Dittusion-base
y DQ. ] ; E-| 1
: | J;AP 3; E I E E X : ; i K,Q Q ° °
. : = | £ 'g )
; | : L Illi Multiple Tissue Shape
: A M i o v A | I A
; : g Comalvuiview £} —[W5E] YOEE | ,
I : Max and Average Non- , " 1 M fine =i : Re COnStru Ctlon
I Esp Pooling (MA 2 X 2 ritical Critical! : ‘ 1
E A E f- . iz :k- e 1: Slices : : k._) HFF (M, JEFFM L1 K,Q :
| Y " 1 1 ' C
: z {:}4 : : : 1 r Predicted Fine Cartilage Mask Predicted Coarse Cartilage Mask E (DMulTlSR> IOSS
1 5.k v | 1 i 1 ‘:’..{ |
- lowm] 5 Z
I ! 1
1 1

inaccuracies in the tibiofemoral
(@) (b) (©)

Fig: Schematic of (b) proposed MiSA-Unet model with (a) SAFE module and (c)DMultiSR loss
function

bones and, more
specifically, the cartilages



IEEE (1)

PROPOSED SAFE MODULE
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The SAFE module is inspired by inception module, but
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includes a qualitative improvements to e ectively capture

task-dependent global and local attention.
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Pixel-wise loss function

Proposed DMultiSR loss tunction

Overall Shape Reconstruction loss
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LOSS FUNCTIONS

n-based Multiple Tissue Shape Reconstruction
(DMulTiSR) Loss

. I

Dittusion-based Cartilage Shape

Reconstruction loss

Lsrr. = Lyt Ly
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Proposed DMultiSR loss function

[17] [18]

Loss inspired by CycleNet """ and SegRetiner

model, but architecturally moditied to consider the

shape information of multiple tissues and with focus

on tibiofemoral cartilage segmentation.
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EXPERIMENTAL SETUP ‘O.\
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Dataset Details

Dataset Size = 512 segmentation maps for each MRI constituting ot 160 slices
MRI Sequence = 3D Double Echo Steady-State (DESS)

Experimental Setup

GPU contigurations = NVIDIA A100 80 GB GPU

Epochs = 100, MRI slice size = 1507150, batch size = 150, and learning rate = 0.03,
Optimizer = Adam

B =[0.01,0.1,0.27,0.12,0.5], A = [0.1,0.2,0.3,0.4], y = 0.7, 1= 0.3, m = 4 and
Nsteps = 2
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EXPERIMENTAL RESULTS

Table: Segmentation SOTA comparison with proposed model

Architecture Metrics FC TC FB TB
Knee MRI Segmentation
DSC (%) 1 89.9 85.6 98.5 98.5
VOE (%) | 18.1 24.9 2.8 2.9
HD (mm) | 5.35 6.35 2.93 3.16
DSC (%) 89.5 83.9 08.5 98.5
VOE (%) 18.92 27.55 — -
DSC (%) 90.3 86.5 08.6 08.8
VOE (%) 17.5 23.6 2.8 2.4
DSC (%) 90.9 85.8 99.1 98.2
DSC (%) 89.8 86.4 08.6 98.6
HD (mm) 5.22 4.70 11.82 5.30
DSC (%) 89.7 89.8 08.7 98.7
HD(mm) 5.58 4.74 4.05 3.82
*Modified Source-free UDA [8] DSC (%) 74.7 594 03.7 947
Other Network Architectures
DSC (%) 88.6 87.0 08.3 08.3
VOE (%) 20.06 2241 3.34 3.29
HD (mm) 6.69 5.23 6.12 4.05
DSC (%) 88.7 87.1 08.3 98.2
VOE (%) 19.62 22.16 3.33 3.24
HD (mm) 6.88 5.56 6.00 6.46

e For Critical MRI slices; excellent results
in FC and TC which are nearly 4.5%
higher for DSC than modified cGAN |[3]

2D and 3D CNN + SSM [2]

*Modified cGAN [3]

2D-3D ensemble Unet [4]

*Modified Unet++ [1]
nnUnet + Entropy
Distance Maps [5]
Unet-S [7]

o Slightly lower results for FC (about 1% in
DSC than Deng et al. [1]) possibly due to

poor delineation of bone cartilage (FB-

Unet [13]

FC) interface and greater shape variability

Attention Unet [20]

and discontihuous nature of cartilage in

HRnet [21] DSC (%) 889 865 982 982 critical MRI slices.
VOE (%) 1867 2211 319 378
HD(mm) 628 594 710 699

SAMed [22] DSC (%)  89.0 871 986 985

VOE (%) 17.89  22.89 2.12 2.90
HD (mm) 5.28 3.94 5.90 3.64 o
DSC (%) 89.8 88.0 98.5 98.5
VOE (%) 18.76  20.94 2.76 3.08
HD (mm) 6.41 4.95 5.47 3.89

DSC (%) 90.4 90.1 98.7 98.6
VOE (%) 17.22 18.97 4.09 2.9
HD (mm) 4.74 3.11 2.54 4.32

® The best and second best results are denoted in red and blue colors, respectively. The * indicates the architectures
specifically utilized for the knee MRI segmentation task, and The © indicates the model’s testing on both critical and
non-critical slices with the post-processing stage (similar to Deng et al.[1]).

For all MRI slices, average minimum
improvement in DSC, VOE, and HD are
0.24%, 9.85%, and 17.31% respectively.

Proposed MiRA-Unet
(Critical slices only)

Proposed MiRA-Unet®
(All slices)




EXPERIMENTAL RESULTS ‘O\

Ground Truth MtRA-Unet Unet

o Excellent results for femur and tibia in all cases

as indicated in Figure 2 (a to f), even in the
presence of soft-tissue inflammation (see

Figure 2 a, b and c).

is improved,

o Cartilage performance
specifically at the cartilage-cartilage interface

as indicated in Figure 2(d,e,f).

e Failure in some cases in capturing the shape of

the tibial bone and cartilage.

Fig: Segmentation SOTA comparison with proposed model



Soci

ety ™

ABLATION STUDY

Table: Ablation study with proposed model

Architecture Loss Metrics FC TC FB TB
Function

baseline WDL DSC (%) 89.5 87.4 98.4 08.4
+ SAFEI VOE (%) 18.62 21.84 3.07 3.16
HD (mm) 6.82 5.05 5.48 3.83

WDL + WCL DSC (%) 89.5 86.4 98.5 08.4

(Lopiz) VOE (%) 18.56 22.64 3.06 3.23

HD (mm) 6.36 5.19 5.83 4.00

YLpiz +NnLsSRL, DSC (%) 89.2 87.2 98.5 08.4

(Leom ) VOE (%) 19.07 2218 298  3.05

HD (mm) 6.94 511 6.8 3.95

Leom ¥ LSREL, DSC (%) 89.7 87.6 98.5 08.5

{Lssiar) VOE (%) 18.23 21.54 294 2.97

HD (mm) 6.87 4.13 6.03 445

baseline WDL DSC (%) 89.6 87.5 98.4 08.4
+ SAFE2 VOE (%) 18.39 21.73 3.09 3.18
HD (mm) 6.42 5.25 5.44 4.00

Lyix DSC (%) 89.2 87.2 98.3 98.4

VOE (%) 19.01 22.10 324 3.07

HD (mm) 6.75 5.39 5.93 3.54

Lecom DSC (%)  89.7 87.6 985 985

VOE (%) 18.20 20.54 394 3.1

HD (mm) 6.53 5.26 5.61 3.82

Proposed o otal DSC (%) 89.8 88.0 98.5 98.5
MiRA-Unet VOE (%) 18.76 2094 296 3.08
model HD (mm) 6.41 4,95 5.47 3.89
baseline WDL DSC (%) 87.1 85.1 96.7 80.5
+ SAFE3 VOE (%) 22.41 25.11 3.31 17.82
HD (mm) 7.03 5.8 7.88 8.22

Lpiz DSC (%) 89.2 87.2 98.4 08.4

VOE (%) 19.09 22.25 3.12 3.10

HD (mm) 6.18 5.3 6.13 4.02

Leom DSC (%) 89.4 86.7 98.5 08.4

VOE (%) 18.81 22.87 2.84 3.03

HD (mm) 6.53 5.78 5.72 3.53

Leotal DSC (%) 89.3 87.0 98.5 08.5

VOE (%) 18.99 22.43 2.97 3.05

HD (mm) 6.57 4.94 6.11 4.15

® The best and second best results are denoted in red and blue colors, respectively.
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e The combined loss function resulted in a
minimum improvement of 0.5% in DSC

and 4.58% in HD than the pixel-wise
loss functions for all SAFE combinations.

o Tibiofemoral cartilages is improved by
adding the loss Lepr, with a combined

loss function of an average of 1.68% in
VOE and 4.72% HD.

e The TC is observed with a2 maximum
improvement of 0.56% in DSC (for
SAFE1).
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CONCLUSION ‘O.\

Proposed MiSA-Unet is an end-to-end and single-stage segmentation

network unlike previous studies.

Proposed model improved average DSC by 2.33% (on critical slices) while

with post-processing it improved minimum DSC by 0.24%, VOE by 9.85%,
and HD by 17.31% (on all slices) over SOTA.

In future, an e

~,

ort will be made to eliminate the postprocessing stage and analyze

the segmentation performance for each KOA grade
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